人类的知识-第80章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
用的方式提出了关于概率的频率解释。①。。
莱新巴哈的著作是米西斯著作的发展,在各个方面都是同一理论的更好
的说明。因此我将只讨论莱新巴哈的著作。
莱新巴哈在列举出概率计算的公理之后,他就提出一种看来是由于见到
统计上的相互关连而想出的解释。他假定两个级数(X1,X2,。。xn,。。),。。
(y1,y2,。。yn; 。。),以及O 和P 两个类。有些x 或者所有x 属于O
类;莱新巴哈感到兴趣的问题是:与x 相对应的y 属于P 类的频率是多少?
举例来说,假定你在研究一位丈夫是否因为他的太太吩叨不休而想自杀
的问题。就这个事例来说,X 都是妻子,y 都是丈夫,O 类由吩叨不休的人组
成,P 类由自杀的人组成。然后已知一个妻子属于O 类,我们的问题是:她
的丈夫属于P 类的频率是多少?
让我们看一看两个系列中各自由前n 项组成的部分。假定在前n 个X 当
中,有a 项属于O 类,并且假定这些当中有b 项使得与x 相对应的y 属于P
类。(与x 相对应的y 和x 具有相同的下标。)这样我们说在从x1 到xn 的
整个部分中O 和P 的“相对频率”是b/a。[如果所有X 都属于O 类,那么a=n,而相对频率就是b/n ]我们用“Hn(O,P)”来表示这种相对频率。
我们现在进一步给“P 在已知O 的条件下的概率”下定义,这个概率我
们用“W(O,P)”来表示。这个定义是:W(O,P)是当n 无限增大时Hn(O,
P)的极限。
我们使用一点数理逻辑就可以使这个定义大大简化。首先,两个系列是
不必要的。因为我们假定两个系列都是级数,因而在它们的项目之间存在着
某种构成——对应关系的东西。如果这叫作S,那么说某一个y 属于一个P
类就等于说与它对应的X 属于那个由对于P 的分子当中某一个分子具有S 关
系的项目所组成的类。例如,设S 是妻子对于丈夫的关系;如果y 是一个结
过婚的人,并且X 是他的妻子,那么y 是一个政府官员这句话在并且只有在
X 是一个政府官员的妻子的情况下才为真。
其次,承认不是所有的X 都属于O 类这种情况并没有什么好处。这个定
义只有在无限数目的X 属于O 类的情况下才是适当的;在这种情况下,那些
属于O 类的X 形成一个级数,而我们就可以把其它剩下的部分忘记。这样如
果我们换用下面的说法,我们就把菜新巴哈的定义中最重要的部分保留下
来:
设Q 为一个级数,α是某个类,就α当中重要的实例来说,在Q 这个系
列中存在着比任何已知分子还要靠后的分子。设m 为α的分子在Q 的前n 个
分子当中的数目。那么我们把W(Q,α)定义为当n 无限增大时m/n 的极限。
也许是由于疏忽,从莱新巴哈的说法来看,好象概率的概念只适用于级
数,而完全不适用于有限类。我认为这并不是他的本意。举例来说,人类是
一个有限类,并且我们愿意在生死统计上使用概率,而完全按照定义的说法
是不能做到这一点的。作为一件心理事实来看,当莱新巴哈说到n=无限大
①
理查德·冯·米西斯《概率、统计与真理》第二版,维也纳,1936(第一版,1928)。汉斯·莱新巴哈
《概率论》来登,1935。并参看后者的《经验与预见》,1938。
时的极限的时候,他是把极限当作某个只要在n 从经验观点上看是大的情况
下就可以非常接近的数,即是说只要在n 与我们的观察手段所能达到的最大
限度相距不远的情况下。他有一个公理或者公设,意思是说就每个大的可以
观察的n 来说,如果存在着这样一个数,那么它就接近等于n=无限大时的
极限。这是一个很别拗的定义,不仅因为它是随意规定的,而且还因为我们
所研究的纯粹数学范围以外的大多数系列都不是无限系列;我们确实可以怀
疑它们当中任何一个是否存在。我们习惯于假定时空是连续的,这就蕴涵着
无限系列的存在;但是这种假定除了为了数学上的方便而外是没有任何基础
的。
为了使莱新巴哈的理论变得尽可能适用,我将假定就有限系列的范围而
论,上一章所绘的定义可以保留,而新的定义只是为了使我们能把概率用于
禾限系列而做的一种扩充。这样他的Hn(O,P)就将是一种概率,但却是一
种只能应用于系列的前n 项的概率。
作为他的归纳形式,莱新巴哈假定了大体如下的公设:假定我们已经对
于O 和P 的相互关连做过N 次观察,使得我们对于直到n=N 为止所有n 的值
都能计算出Hn/(O,P),并且假定对于整个后一半n 的值来说,Hn(O,P)
与某一分数P 相差永远小于ε,这里ε是很小的数。然后我们将假定不管我
们怎样增大n,Hn(O,P)将仍然不超出这些狭窄的界限,因而作为n=无限
大时的极限的W(O,P)也不会超出这些界限。如果没有这个假定,关于n=无限时的极限我们也就不会有任何经验上的证据,而专为了它们才做出这
个定义的那些概率也就一定完全不能被人认识。
面对着上面所说的困难,人们可以为莱新巴哈的理论提出两点辩护理
由。第一,他可能认为假定n 无限接近无限大并不必要;就所有实际用途来
说,只要n 可以变得非常大就够了。比方说假定我们在研究生死统计。保险
公司并不关心再过一万年之后生死统计上所发生的变化;它所关心的最多不
过是今后一百年的事。在我们已经积累统计结果之后,如果我们假定直到我
们掌握了十倍于目前的数据之前,频率将大体保持不变,这就足以应付所有
实际的需要。莱新巴哈可能说当他说到无限大时,他用的是一种方便的数学
速记,意思只表示“这个系列中我们一直还没有研究过的一大部分”。他也
许说,这种情况极其类似用经验方法确定速度的情况。从理论上讲,一个速
皮只有在可测量的空间和时间的微小性没有限度的条件下才可以确定;从实
用上讲,因为不存在这样的极限,我们也就从来不能知道在一个瞬间哪怕是
近似的速度。诚然我们可以相当准确地知道一小段时间内的平均速度。但是
即使我们假定连续性的公设,通过比方说一秒钟的平均速度我们也绝对得不
到关于这一秒钟的一个特定瞬间的速度的任何知识。一切运动也许可能都是
由为一些无限速度的瞬间所隔开的静止时间所组成的。如果我们不依靠这种
极端的假说,即使我们假定数学意义上的连续性,任何一个瞬间的有限速度
都可以与一段一定时间内任何有限平均速度不相抵触,不管包括这个瞬间的
这段有限时间怎样短暂。可是就实际用途来说,这并没有什么关系。除了类
似爆炸的少数现象外,如果我们认为通过一段很短可测量时间所得到的任何
瞬间速度近似于那段时间的平均速度,那么我们就会发现物理学的定律是能
够证实的。因此我们可以把“瞬间速度”当作为了方便而想出来的数学上的
虚构。
同样,莱新巴哈可能说,当他说到在n 为无限时一个频率的极限的时候,
他所指的只是在很大的数目下实际的频率,或者不如说具有很小限度误差的
这种频串。无限大和无限小是同样不能观察的,因而(他可能说)对于经验
科学来说是同样无关宏旨的。
我愿意承认这个答案的正确性。我只因为莱新巴哈的书没有明确地把这
一点讲出来而感到惋惜;但是我却认为他心里一定是这样想的。
有利于他的学说的第二个论点就是它正好适用于我们愿意对之应用概率
论证的那些实例。当我们关于某一将来事件具有某些数据,但却不足以确定
这个事件在我们感到兴趣的方面所具有的特性时,我们就愿意使用这些论
证。比方说,我的死亡是一个将来的事件,并且如果我去保寿险,我就可能
想知道关于我可能死在某一特定年份存在着什么证据。就这样的实例来说,
我们总有许多记录在一个系列中的个别事实,并且我们假定我们迄今所发现
的那些频率将大体继续下去。或者举赌博为例,这是全部概率产生的来源。
我们感到兴趣的并不是一次掷两个骰子有36 种可能的结果这个单纯的事
实。我们感到兴趣的是这件事实(如果它是事实的话),即在由抛掷组成的
一个很长的系列中,这36 种可能当中每一种可能都有近似相等的实现次数。
这是一件不能仅从36 种可能的存在推论出来的事实。当你遇到一个生人的时
候,恰好有着两种可能:一方面,他可能是埃本尼兹·威尔克斯·斯密士;
另一方面,他可能不是。但是在我漫长的一生中,我遇到过许多生人,我发
现前一种只实现过一次。纯粹数学中的概率论只列举可能的事例,除非我们
知道每种可能的事例发生的频率近似相等,或者以某种已知频率发生,否则
这种理论就没有实用上的好处。如果我们研究的是事件,而不是一个逻辑图
式,那就只能通过实际统计才能知道,而我们可以说实际统计的应用一定要
大体按照莱新巴哈的理论来进行。
我也将只是暂时承认这种论证;将来我们考察归纳的时候,我们将重新
研究这种论证。
对于照莱新巴哈所讲的那种理论还有另外一种不同性质的反对意见,这
种意见所针对的是他在似乎只需要类的情况下引入了级数。让我们举一个具
体的例来说明:任意选取的一个整数是质数的机会有多少?如果我们按照整
数的自然顺序来选取整数,那么照他的定义来说,机会是零;因为如果n 是
一个整数,在为大数时,小于或等于的质数的数目近似于n
logn
n
,所以一个
n
小于的整数为质数的机会近似于
log n
,而在无限增大时n
log n