1965-零的历史-第4章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
直到有人想出了一个高明的主意(或者这个主意仅仅只是一个碰巧凑效的权宜之计,谁知道呢)——以楔形的书写位置来代表数值的大小而不论楔形形状的大小,这种混乱的局面才结束。因此,不管楔形是大是小, 总是表示202:3个60,2个10另加2。 表示182:3×60+2。
这种用位置来表示数字大小的体系一旦普及开来,为了一目了然,引入空位和规范的楔形及钩形组就成为必然。就像我们的“754”是表示(7×102)+(5×10)+(4×1)一样,
表示是62,但 表示是3 661;
↑ ↑↑↑↑
(1×60)+ 2 (1×602)+(1×60) + 1
和
是754。
↑↑
(12×60) +34
=720
这样做是非常奇妙的事情。它不仅仅能让我们很快的写出很大的数字(比如1999就将变成这样的表示 )
↑ ↑
(33×60)+ 19
=1 980
而且更重要的是能让我们的运算变得相对容易。举个例子,我们做加法
43
+14
57
是通过首先把3和4相加,再把4个10和1个10相加。
对巴比伦人(Babylonian)来说,他们是这样加的,
但是如何“进位”呢?这是一个我们孩提时代感到困惑的事情。我们来做
82
+41
123
(2个单位加上1个单位是3个单位,8个10加上4个10是12个10,也就是,2个10和1个100)。他们这样做
6个10是1个60,3个单位
再加上原来已经存
在的1个60
我们就得到2个60
对于我们,把一个数字移到它左边的数位上,它的值就变成原来的十倍,在巴比伦的表示方法中就变成原来的60倍。当一个数位满了,处理的方法是把这一位去掉10——或60,在左边一位加上1。
索福克勒斯(Sophocles古希腊悲剧诗人——译者注)说:“没有磨难就没有伟大事件发生。” 引入位置来表示数值的大小固然伟大,但巴比伦人怎么区分180: 和3: 呢?也就是说,他们怎么知道“3”在个位还是在60位?神庙里的神父从记录中怎么才能知道上一年送给女神的祭品是2只羊呢,还是120只羊?很显然,是通过当时的情况来考虑;就象当你考虑半加仑牛奶值55,旅行社到多伦多的廉价飞行价格也是55,你是知道小数点应该放在哪里的。
但是,生活变得更加纷繁复杂了,事物的数目更大了,仅凭各种情况来判断数目的大小变得不再可靠。忍受了上千年的模棱两可后(是这方面的不同进度使文明有了明显的差异?),在公元前6到3世纪,终于有人创造并使用了一个具有划时代意义的符号 ,这个符号或许是在定义两列楔形如何分开时独立出来的单词,也或许是来自另一个语言中的符号。无论如何,他有效的表示了这样的含义:“这一列什么也没有”。因此
=125
↑↑
(2×60)+5
但是 =7205
↑↑↑
(2×602)+(0×60) +5
=7 200
正如你所想象的一样,人们有各种各样书写0的方法,随心所欲,所以就有了下面这样的书写方法:
和 甚至是 或者 。
在启什(Kish美索不达米亚的古代城市,位于今天伊拉克中部幼发拉底河流域。其众多的遗迹成为关于苏美尔人文明的有价值的考古学证据——译者注)遗址发掘出的一个记事簿(大约公元前700年)上,记事员是用三个“钩”而不是两个倾斜的楔形来表示他的零,它们看上去像30;而同一时期的另一个记事员则只用一个“钩”来表示他的零,以至于与10很难区分。难道是粗心吗?或者这种变化表明我们已经非常接近了表示零的最早的独立符号,它的意义和形式正在慢慢形成吗?
然而,这种零的标记只被用在数字的中间,从来没有在数字末尾出现过。从你的存货清单上看你的库存面包,到底是够2个人食用呢,还是够420个人食用?这可能需要你研究不同的时期、不同的地点、不同的人们,你才可能最终知道。
正如狂欢节时人们常说的那样:狂欢时,你在交叉路口丢失了东西,你会在连接它的路上拾到东西。有所失,就有所得,零从来没有被用在数字末尾使我们失去了准确性,但也使我们得到了灵活多变。由于没有零在数字的末尾,我们将不能区分出2,20,200这些数字,所以计算乘法2×3、20×3或200×3是一样的容易:答案永远是6,然后加上可以凭常识或当时情境得到的数量级。因此,当有人声称灵活多变是这种符号的最大优点时,也就不足为怪了。
在巴比伦后来的岁月中,有人第一次给了“空空如也”一个“居所”和名字,不管这个人是谁,都没给自己留下任何东西。也许那一对楔形符号是对他的历史地位最合适的纪念。
第一部分 透视零第6节 希腊人没有这个字(1)
为什么解决零的表示问题的过程如此旷日持久呢?为什么这以后使用零的步伐仍踌躇不前呢?为什么已经浮出水面又没入水中,若隐若现?原因在于我们思想与语言相互转化的方式,和由此产生的困惑,不管是过去还是现在。这也是一种娱乐,想想我们从格什温(Gershwin)的诗里得到乐趣
我得到了足够的零,
但是一个已足够。
我们怀着强烈的兴趣,反复思考这句看似荒诞不经的话,品位它表面与内涵的不同。
这种似是而非的说法在古代迅速成为流行。公元前十八世纪末的某个时候,编辑整理《奥德赛》(Odyssey,古希腊荷马所作史诗,汉语意思是指长期的冒险旅行——译者注)的歌唱家在奥德修斯(Odysseus,《奥德赛》中的主人公——译者注)刺瞎了独眼巨人波吕斐摩斯(Polyphemos,独眼巨人之一)的故事中研究过它,独眼巨人(Cyclops,独眼巨人家族的任何一个,在这里指波吕斐摩斯,据说从这些泰坦Titans传下来,居住在西西里岛,只有一只眼睛的神——译者注)吃掉了奥德修斯的几个同伴,要不是奥德修斯骗过了他,并刺瞎他的眼睛,剩下的同伴也会成为他的盘中餐。
奥德修斯让波吕斐摩斯喝下烈酒,当独眼巨人叫道:
“再给我一些酒,立刻把你的名字告诉我,以便让我给你一件奇异的礼物让你
称心如意。”
奥德修斯一次又一次倒满他的酒碗,说:
“巨人,你想知道我显赫的名字,但是我要求你
遵守诺言,给我这份奇异的礼物。
事实上,我的名字叫‘没有人' ,Outis'’。我的父亲和母亲叫我‘没有人’,同伴也这么叫我。”
他这么一说,波吕斐摩斯立刻残忍地说:
“‘没有人’,我先吃掉他的同伴,最后再吃‘没有人’,这就是我给你的奇异
的礼物。”
一等巨人醉倒昏迷过去,奥德修斯和他的同伴们就用尖树桩刺瞎了他的眼睛,波吕斐摩斯发出了痛苦的喊叫声,别的独眼巨人都跑来了,他们在他封闭的洞穴前向他呼喊:
“波吕斐摩斯,你为什么被人战胜?
在这样神圣的夜晚,你的叫声让我们无法入睡。
不可能有人敢不顾你的反对正带走你的羊群吧?
不可能有人正在用诡计或暴力伤害你吧?”
残暴的波吕斐摩斯在洞穴中跟他们说:
“我的朋友们啊,‘没有人’正在用诡计和暴力伤害我。”
他的朋友们听到这个以后,劝说他要耐心承受上帝给予的一切,便回到自己的洞穴中。所以奥德修斯和他的同伴们一边逃跑一边嘲笑瞎眼的巨人。
你一定会认为,这个能够整理和津津乐道这样一个笑话的人给“无”一个名字,并象奥德修斯对巨人所做的那样灵活使用“无”也是轻而易举的。但是,在荷马时代或古希腊都没有零的踪迹,事实上,直到亚历山大时代(这个笑话已经不复辉煌的时候)也没有。如果在你面前看不到或思想中也不存在计算板的数位,一个数位上的筹码已经满了要进到前一位而留下一个空白在后面——如果你没有符号来代表那些空的或填满的位置,并从你熟练的操作中创造一种语言——那么你就不可能超越你的手工,竭尽可能做的就是:吸取并简化眼睛能看到的,然后对它们进行升华。
荷马(Homer)时代的希腊人以10(有时以5)来进行分组,以这些词的第一个字母来代表数字符号,象罗马人后来做的那样从左向右成串地写下这样的符号,所以318就是300+10+5+3
HHHΔΠⅢ
↑↑↑↑
3×H+1×Δ +1×Π+3
这里,H,Δ和Π分别为Hekatm(100),Deka(10),Pente(5)的第一个字母。
没有位置符号,因此后来就有了罗马人所遭遇的估算时的所有不幸。更糟的是:那些早期希腊人没有把数字从他们的计数中完全抽象出来,因此,偶尔地代表货币单位与数量的符号会合成在一起:他们写 而不是HT来代表100塔兰特(T)。就象我们写代表一美元,写 表示11美元,让随意涂鸦作装饰品来引导我们,而不是描画特别抽象出来的符号。
在5世纪的雅典(Athens),高度发达的希腊文明时期,一场我们无法知道原因的改革席卷而来。它使希腊字母表中的24个字母加上另外3个字母分别代表数字的前9(1—